VESTEL

ALVA B
SERVICE MANUAL

TABLE OF CONTENTS

1. Specifications AGE
1.1. Product Specifications 3
1.2. Name Plate 3
2. Installation Instructions 4
2.1. Moving and Installing 4
2.2. Detergent Box Group 5
3. Operating Instructions
5.1. LCD Screen, Function Buttons \& Knobs 6
5.2. Program List 6
5.3. Program Details
5.5. Child Lock 8
4. Test Mode 9
6.1. Autotest 9
5. Service Mode
11
5.1. Service Autotest

-

5.2. Failure Codes 12
6. Troubleshooting Guide 12
7. Disassembly and Assembly Instructions 14
7.1. Top Plate 14
7.2. Door 14
7.3. Tub Bellows Seal 16
7.4. Detergent Drawer 16
7.5. Control Panel 16
7.6. Kick Plate 18
7.7. Front Panel 18
7.8. Upper Support Bracket 20
7.9. Detergent Drawer Housing 20
7.10. Power Cable Group and Parazit Filter 21
7.11. Electronic Pressure Switch (EPS) 22
7.12. Door Lock 22
7.13. Pump Motor 22
7.14. Front Counterweight 23
7.15. Heater 23
7.16. Tub Bellows Seal 24
7.17. Transport Screw 24
7.18. Upper Counterweight 25
7.19. Washing Group 25
7.20. Shock Absorber PIN 26
7.21. Belt 26
7.22. Driven Pulley 26
7.23. Motor 26
7.24. Tub Entrance with Bellow Hose 27
7.25. Pressure Switch Hose Group 27
7.26. Tub 27
7.27. Drum 27
8. Component Specifications 28
8.1. Drain Pump 28
8.3. Resistance 30
8.4. NTC 32
8.5. Valve 34
8.6. Electronic Pressure Switch (EPS) 36
8.7. Motor 37
8.8. Door Lock 40
9. Wiring Diagram 42
9.1. Wiring Diagram $\mathrm{NA}-127 \mathrm{VB} 3$ and $\mathrm{NA}-147 \mathrm{VB} 3$ 42

1. Specifications

1.1. Product Specifications

Product Type	42 It
Capacity	Front Loader
Max Spin Speed (r/min)	5 kg
Energy Consumption	Height
Water Consumption	Width
Wash Programs	$400-500-600-800-1000$
	Depth
Other Features	43 L/cycle

1.2. Name Plate

2. Installation Instructions

2.1. Moving and Installing

2.1.1. Removal of Transportation Screw

1. Transportation screws, which are located at the back side of the machine, must be removed before running the machine.
2. Loosen the screws by turning them anticlockwise with a suitable spanner.

3. Pull out the screws and rubber washers.

2.1.2. Foot Adjustment

1. Do not install machine on rugs or similar surfaces.
2. For machine to work silently and without any vibration, it should be installed on a flat, non-slippery firm surface. Any suspended floor must be suitably strengthened.
3. You can adjust the level of machine using its feet.
4. First, loosen the plastic adjustment nut away from the cabinet base.
5. The holes where the transport screws have been removed should be covered with the plastic transport caps found in the accessories bag.

6. The transportation screws that have been removed from the machine must be re-used in any future transporting of the machine.
7. Change the level by adjusting the feet upwards or downwards.
8. After level has been reached, tighten the plastic adjustment nut again by rotating it upwards against the base of the cabinet.
9. Never put cartons, wooden blocks or similar materials under the machine to balance irregularities of the floor.

2.1.3. Electrical Connection

1. Washing machine requires a 50 Hz supply of $220-$ 240 Volts.
2. A special earthed plug has been attached to the supply cord of washing machine. This plug must be fitted to an earthed socket. The fuse value fitted to this plug should be 13 amps. If you have any doubts about electrical supply, consult a qualified electrician.

THIS APPLIANCE MUST BE EARTHED.
Insert the machine's plug to a grounded socket which you can easily reach.

2.1.4. Water Supply Connection

1. Washing machine is supplied with a single (cold) water inlet.
2. To prevent leakage from the connection joints, a rubber washer is included in the hose packing. Fit this washer at the end of water inlet hose on the tap side.
3. Connect the hose to the water inlet valve. Tighten the plastic connector by hand. Please call a qualified plumber if you are unsure about this.
4. Water pressure of $0,1-1 \mathrm{MPa}$ from tap will enable machine to work more efficiently. $(0,1 \mathrm{MPa}$ pressure means water flow of more than 8 litres in 1 minute from a fully opened tap)

2.1.5. Drain Connection

1. Make sure that water inlet hoses are not folded, twisted, crushed or stretched.
2. The drain hose should be mounted at a minimum height of 60 cm , and a maximum height of 100 cm from the floor.

2.2. Detergent Box Group

PREWASH = WATER ENTRY VALVE 1
MAIN = WATER ENTRY VALVE 2
SOFTENER = WATER ENTRY VALVE 1 + VALVE 2
5. After connection is complete, check for leakage by turning on tap completely.
6. Make sure that water inlet hoses can not become folded, damaged, stretched or crushed when the washing machine is in its final position.
7. Mount the water inlet hose to a $3 / 4$ " threaded water tap.
3. The end of the drain hose can be connected directly to a drainage stand-pipe or alternatively to a specific connection point designed for that purpose on the waste outlet of a sink unit.
4. Do not extend the drain hose or guarantee will be invalidated.

3. Operating Instructions

3.1. LCD Screen, Function Buttons \&
 Knobs

PR	Program selector 16 programs with ON/OFF.
SW1	Switch 1, Start / Pause
SW2	Switch 2, Function 1 Selection
SW3	Switch 3, Function 2 Selection
SW4	Switch 4, Function 3 Selection
PT	PT speed potentiometer

3.2. Program List

Knob Position	Program
Pos1	COTTON90 ${ }^{\circ} \mathrm{C}$
Pos2	COTTON $60^{\circ} \mathrm{C}$ PR W
Pos3	COTTON $60^{\circ} \mathrm{C}$
Pos4	COTTON $40^{\circ} \mathrm{C}$
Pos5	ECO WASH
Pos6	COTTON 30'C
Pos7	QUICK WASH
Pos8	COTTON COLD
Pos9	MIX WASH
Pos10	SYNTHETICS $60^{\circ} \mathrm{C}$
Pos11	BABY WASH
Pos12	SYNTHETICS 40 ${ }^{\circ} \mathrm{C}$
Pos13	SPORT WEAR
Pos14	SYNTHETICS COLD
Pos16	CURTAIN WASH
Pos17	DELICATE 30'C
Pos18	DELICATE COLD
Pos19	HAND WASH
Pos20	WOOL 30 ${ }^{\circ} \mathrm{C}$
	WOOL COLD

3.5. Child Lock

Activation

1. Press the 1 . and 3 . function button for $4-5$ seconds.
2. The Chihl Lock Symbol is appear on the Icd display.

Deactivation

1. Press the 1. and 3 . function button for $4-5$ seconds.
2. The Child Lock Symbol is deleted on the Icd display.

Activation Indication

1. The symbol (16) makes fast blink for indication and is then fix on.

Child lock during the programme

1. Machine does not respond to any pressing of buttons or changing position of program knob but option icon makes fast blink to evoke the user.

Deactivation Indication

1. Option icon makes fast blink and is then off.

In Error Mode

1. Child lock will be automatically deactivated when error is detected except NTC (E05) and Voltage (E09) errors.

When E05 and E09 is detected, the child lock will be deactivated at the end of the program or the user will be able to deactivate it. On other hand, if the user brings the programme knob to zero and then any position during these two error modes, firstly it will show child lock active indication and then the error indication and it will continue the cycle.

In end condition

1. When cycle is finished child lock is automatically deactivated.

4. Test Mode

4.1. Autotest

* This test is for quick checking of the product. You can not see the failure codes.

1. After selecting spin speed to max, select the program 3

2. Press 1. function button

3. While pressing 1. function button, change position of the knob from third to second

4. Release 1. function button

5. Press 1. Function button again.

6. While pressing 1. function button, change position of the knob from second to first.

Ntc detection : Software will detect NTC's resistance value and will check if the temperature is between $5^{\circ} \mathrm{C}<$ Tdetected $<40^{\circ} \mathrm{C}$. If it is inside the range, heating step will be done.
If temperature value is outside the range, then it means NTC is detecting the temperature in a wrong way and heating step will be skipped.
EPS measurement: It checks the EPS and if it OK, it continues the autotest; if it is Not OK then cancel the Autotest and go to the selection mode. Also if any frequency can not be detected, then it means there is problem with connection or EPS, so it gives E10 which is EPS error and cancels the autotest \& goes to the selection mode.

5. Service Mode

5.1. Service Autotest

Activation

Press function 1 and function 2 buttons at the same time and while pressing the buttons bring program selector to position 1. All LEDs (Func1\&2) will be OFF and machine will get into service autotest mode.
While getting into service autotest, door will be locked.
Service autotest will be done step by step. It has to be done consecutively starting from Autotest 1.

In cases of:

1. Bringing program knob to zero position
2. Bringing program to a backwards position

Service autotest will be cancelled.

Changes

1. Selector position $\mathbf{1}$ will be "Motor CW low speed"

Speed will be 53 rpm for all models.
Machine will turn with 53 rpm for 1 minute and then will stop.
As soon as it stops, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 1 is 1 minute.
Note: If user changes the selector position without waiting for 1 min., machine will do what is defined for the new selected position.

2. Selector position 2 will be "Motor CCW low speed"

Speed will be 53 rpm for all models.
Machine will turn with 53 rpm for 1 minute and then will stop.
As soon as it stops, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 2 is 1 minute.
Note: If user changes the selector position without waiting for 1 min., machine will do what is defined for the new selected position.

3. Selector position $\mathbf{3}$ will be "Motor CCW sense high speed"

Machine will check if there is water inside the drum (level is higher than Empty) and if there is, machine will drain water before ramping up to maximum.

Machine will ramp up to maximum speed, will stay there for 5 seconds and then will stop.
As soon as it stops, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 3 is about 1 minute.
Note: There should be no load inside the drum in this position cos ramp will be done without unbalance control.

4. Selector position 4 will be "Door Unlocked"

When door is unlocked:
END LED (LED 5) will be ON
After 5 seconds than door is unlocked, all function LEDs will flash. This will mean machine is ready to go to next position. So, time for selector position 4 is about 2 minutes.

Note: To see the effect of this step we should wait for about 1 min. till door gets unlocked.

5. Selector position 5 will be "Door Locked"

When door is locked:
START/PAUSE LED (LED 1) will be ON
After 30 seconds than door is locked, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 5 is about 1 minute.

6. Selector position 6 will be "Valve 1 ON"

Valve 1 will be open for 30 seconds and then will stop.
As soon as it stops, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 6 is about 30 seconds.
Note: If user changes the selector position without waiting for 30 seconds, machine will do what is defined for the new selected position.

7. Selector position 7 will be "Valve 2 ON"

Valve 2 will be open for 30 seconds and then will stop.
As soon as it stops, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 7 is about 30 seconds.
Note: If user changes the selector position without waiting for 30 seconds, machine will do what is defined for the new selected position.

8. Selector position 8 will be "HEATER ON'

Important points:

1. Water level will be checked before heating and if level is below P0 machine will fill water with main wash valve till P1
2. Connection of NTC will be checked. If there is no connection (open or short circuit), machine will give heating failure
3. If temperature doesn't increase $2^{\circ} \mathrm{C}$ in 8 minutes, machine will again give heating failure.

Heating failure is: START (L1) and END (L5) LEDs will flash,
After 8 min if there is a failure machine will give failure and if there is not, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 8 is about 8 minute.
Note: If user changes the selector position without waiting for 15 min ., machine will do what is defined for the new selected position.
9. Selector position 9 will be "PUMP ON"

NTC will be checked firstly. If the measured temperature is higher than $50^{\circ} \mathrm{C}$, then it takes 80 sec cooling water. It will drain until "Pzero plus Empty" Pump will be open for "till Empty level reached +15 sec." and then will stop.
As soon as it stops, all function LEDs will flash. This will mean machine is ready to go to next position.
So, time for selector position 9 is about 1,5-2 minutes.
Note: User should wait till pump activation completely finishes in order not to affect behavior of other selector positions.
After position 9; user interface, LED and button check will begin and for these positions, behavior can be followed from the chart.

Notes:

1. For these positions there will be no time restriction (these responses of machine carry no risk of safety), user will manage this.
2. Machine will not warn or indicate that it is ready to go to next position (like "all function LEDs flash" which we will use for first 9 positions) because there is no certain and restricted time for these responses.
User can pass to next position as soon as completing check of current position

MODEL	$\begin{gathered} \hline \text { SELECTOR } \\ \text { POSITION } \\ 10 \\ \hline \end{gathered}$	SELECTOR POSITION 11	SELECTOR	SITION 12	SELECTOR P	ITION 13	SELECTOR	SITION 14	SELECT	POSITION 15
	Result	Result	Action	Result	Action	Result	Action	Result	Action	Result
B1	$\begin{aligned} & \text { L1, L2, L3 } \\ & \text { ON } \end{aligned}$	$\begin{gathered} \text { L4 \& L5 } \\ \text { ON } \end{gathered}$	PUSH BUTTON START/PAUSE	$\begin{gathered} \text { LED } \\ \text { START/PAUSE } \\ \text { ON } \end{gathered}$	NO ACTION	L4 ON	NO ACTION	ALL LEDS FLASH	NO ACTION	$\begin{gathered} \text { END LED (L5) } \\ \text { ON } \end{gathered}$
			PUSH BUTTON FUNC 1	LED FUNC 1 ON						
			PUSH BUTTON FUNC 2	LED FUNC 2 ON						
B2	$\begin{aligned} & \text { L1, L2, L3 } \\ & \text { ON } \end{aligned}$	$\begin{gathered} \text { L4 \& L5 } \\ \text { ON } \end{gathered}$	PUSH BUTTON START/PAUSE	$\begin{gathered} \text { LED } \\ \text { START/PAUSE } \\ \text { ON } \\ \hline \end{gathered}$	TEMPERATURE SELECTOR MIN	L5 ON	NO ACTION	ALL LEDS FLASH	$\begin{gathered} \text { NO } \\ \text { ACTION } \end{gathered}$	$\begin{gathered} \text { END LED (L5) } \\ \text { ON } \end{gathered}$
			PUSH BUTTON FUNC 1	LED FUNC 1 ON	TEMPERATURE SELECTOR MAX	L4 ON				
			PUSH BUTTON FUNC 2	LED FUNC 2 ON	TEMPERATURE SELECTOR MID	L4 \& L5 ON				

5.2. Failure Codes

Error Indication	Error Number	Indication For User	Indication For Service
		Yes/No	Yes/No
Door is not locked	E01	Yes	Yes
Door is unlocked during programme	E01	Yes	Yes
Lack of water	E02	Yes	Yes
Pump failure	E03	Yes	Yes
Overflow	E04	Yes	Yes
NTC or Heater Failure	E05	No	Yes
Motor Failure -1 (Tachometer open-short circuit or motor connector is disconnected)	E06	No	Yes
Electronic Pressure Sensor	E10	No	Yes

E01	Door Lock Error	Start/Pause LED blinks
E02	Lack of Water	Ready LED blinks
E03	Pump Error	Start/Pause \& Ready LEDs blink
E04	Overflow Error	End LED blinks
E05	NTC/Heater Error	Start/Pause \& End LEDs blinks
E06	Motor Failure	Ready \& End LEDs blink

E01		$\begin{gathered} \text { START-PAUSE } \\ \text { BLINK } \end{gathered}$	E04		STор вимк
(-) (-) \bigcirc	:		(-) (-)	:	
E02		readr bunk	E05		$\begin{gathered} \text { START- } \\ \text { PAUSE } \\ \text { STOP BUNK } \end{gathered}+$
($)^{(0) ~(0) ~}$!		(-) (-)	-	
E03		$\begin{array}{\|cc\|} \hline \text { START-PAUSE } \\ + & \text { READY } \\ + & \text { BLINK } \end{array}$	E06	,	READY+STOPPERMANENT
(0) (0) (0)	$\stackrel{\square}{\square}$		($)^{\text {(}) ~(\bigcirc) ~}$		
E10				BLINK	
(-) (-)	!		Permanent		

6. Troubleshooting Guide

All repairs which must be done on the machine should be done by authorized agents only. When a repair is required for machine or you are unable to eliminate the failure with the help of the information given below:

- Unplug the machine.
- Close the water tap.

FAILURE	PROBABLE CAUSE	METHODS OF ELIMINATION
Machine does not operate.	It is unplugged.	Insert the plug into the socket.
	Fuse is defective.	Change fuse.
	Start / Pause button has not been pressed.	Press the start / pause button.
	The program knob is in 0 (off) status.	Bring the program knob on the desired status.
	The door is not shut properly.	Shut the door properly. You should hear the click.
	Child lock is active.	See page 9.
Machine does not receive water.	Water tap is closed.	Open water tap.
	The water inlet hose may be bent.	Check the water inlet hose.
	The water inlet hose is obstructed.	Clean the filters of water inlet hose.
	The water inlet filter is obstructed.	Clean the valve inlet filters.
	The door is not shut properly.	Shut the door properly. You should hear the click.
Machine is not draining water.	The drain hose is obstructed or bent.	Check the drain hose.
	The pump filter is obstructed.	Clean the pump filter.
	The clothes are not placed inside the machine in a well-balanced manner.	Spread the clothes inside the machine in an orderly and well-balanced manner.
Machine is vibrating.	The feet of machine are not adjusted.	Adjust the feet.
	Transportation screws are not removed.	Remove transportation screws.
	There is a small amount of clothes in the device.	It does not prevent operation of the machine.
	Excessive amount of clothes are filled in the machine or the clothes are not placed in a well-balanced manner.	Do not exceed the recommended quantity of clothes and spared clothes in the machine in a well-balanced manner.

FAILURE	PROBABLE CAUSE	METHODS OF ELIMINATION
Excessive foam in the detergent drawer	Too much detergent has been used.	Press the start/pause button. In order to stop the foam, dilute one table-spoon of softener in half liter of water and pour it in the detergent drawer. Press the start/pause button after 5-10 minutes. Arrange the amount of the detergent properly in the next washing process.
	Wrong detergent has been used.	Use only the detergents produced for full automatic machines.
The washing result is bad.	Laundry too dirty for the program you have selected.	Select a suitable program.
	The amount of detergent used is not sufficient.	Use more detergent according to the detergent.
The washing result is not good.	Clothes exceeding the maximum capacity has been filled in machine.	Put the clothes in machine in a manner not to exceed its maximum capacity.
	Water may be hard.	Use the amount of detergent according to the declaration of the detergent producer.
	Distribution of the clothes in machine is not well-balanced.	Spread the clothes inside the machine in an orderly and well-balanced manner.
The water is seen in the drum during	No failure. The water is at the lower part of the drum.	

washing.		
There are residues of detergent on the clothes.	The pieces of some detergents which do not dissolve in water may stick to clothes as white stains.	By calibrating machine for "Rinsing" program, make an additional rinsing or eliminate the stains After drying with the help of a brush.
There are grey stains on the clothes.	These stains may be caused by oil, cream or ointment.	In the next washing operation, use the maximum detergent amount declared by the detergent producer.
The spinning process is not done or starts with delay.	No failure. The unbalanced load control works in that way.	The unbalanced load control system will try to distribute clothes in a homogenous manner.
After clothes are distributed, passage to spinning process will be realized. In the next washing process, place clothes into the machine in a well-balanced manner.		

7. Disassembly and Assembly Instructions

7.1. Top Plate

1. Remove two screws that fix the top-plate at the back.

7.2.

Door

1. R
e
m

2. Pull the door up.
3. Remove screws that fix the door group.
4. Remove six screws that fix the door hinge as it is shown in the picture.

5. Remove the door handle as it is shown in the picture.

6. Remove the door handle pim as it is shown in the picture.

7.3. Tub Bellows Seal

1. First remove the spring wire fixing the tub bellows seal by using the small size screw driver.
Pull the tub bellows seal as it is shown in the picture.

2. Remove the tub bellows seal-body fixing spring.

7.5. Control Panel

1. Remove the screw which fix the control panel to the front

7.4. Detergent Drawer

1. Remove the detergent drawer and pull it up carefully

[^0]
3. Pull the control panel up.

4. Remove connectors as it is shown in the picture.

7.6. Kick Plate

1. Remove the right part of the kickplate as it is shown in the picture.

2. Remove two screws fixing the kickplate.

3. Pull the kickplate left and push it down.

7.7. Front Panel

1. Remove two screws fixing the front panel at the bottom as it is shown in the picture by using T25

2. Remove two screws fixing the door lock as it is shown in the pictures.

3. Remove two screws fixing front panel at the upper as it is shown in the picture.

4. Remove two screws fixing front panel at the below as it is shown in the picture.

5. Remove the front panel as it is shown in the pictures.
7.8.
6. Remove two screws fixing the body group at the front as it is shown in the picture.

7. Remove two screws fixing the body group at the upper as it is shown in the picture.

8. Remove detergent drawer group two clips fixing the upper support bracket as it is shown in the picture.

7.9. Detergent Drawer Housing

1. Remove the tub seal clamp by using the pliers, which is attached to the detergent drawer housing.

2. Remove the four connectors that is connected to the feed valve as it is shown in the picture.

3. Turn the feed valve counter clockwise slightly to remove.

4. Remove the detergent drawer housing assembly.

7.10. Power Cable Group and Parazit Filter

1. Remove the five conectors that is connected to the parasite filter.

2. Remove two screws fixing the parasite filter.

3. Pull the power cable group up as it is shown in the picture.

4. Remove parasite fitler fixing body group as it is shown in the picture.

7.11. Electronic Pressure Switch (EPS)
5. Remove the connector that is connected to the EPS.

6. Pull the EPS upward to remove as it is shown in the picture.

7. Remove the eps hose handcuffs and eps hose as it is shown in the picture.

7.12. Door Lock

1. Remove the connector that is connected to the door lock.

7.13. Pump Motor

1. Remove pipe clip that fixes the drain hose.

2. Remove pipe clip fixing the tub outlet hose.

3. Remove the connector that is connected to the pump motor.

4. Remove four screws fixing the pump motor.

7.14. Front Counterweight

1. Remove four screws fixing the front counterweight on the front. (Box wrench size 13 mm)

7.15. Heater

1. Remove the four connectors that is connected to the heater.

2. Remove one nut fixing the heater slightly (box wrench size 8 mm)

3. Hold the heater and pull it out.

7.16. Tub Bellows Seal

1. Remove the tub gasket clip by using small screwdriver.

2. Hold the tub bellows seal and gasket-body fixing spring together, and pull them up.

7.17. Transport Screw

1. Remove four transport screws (box wrench size 10 mm)

2. Hold the transport screw and pull it out.

3. Remove two screws fixing the upper counterweight by using box wrench size 13 mm .

4. Remove the upper counterweight

7.19. Washing Group

1. Remove the connector that is connected to the motor.

7.20. Shock Absorber PIN

3. Remove the four screws fixing the spring hanger sheet iron.

4. Remove the washing group as it is shown in the picture.

2. Cut the five lead wire holders as shown the pictures.

1. Remove two pins fixing the shock absorber as shown in the picture.

7.21. Belt

1. Remove the belt as it is shown the picture.

7.22. Driven Pulley

1. Remove the screw fixing driven pulley it is shown the picture (By using T40).

2. Remove the driven pulley it is shown the picture.

7.23. Motor

1. Remove the four screws fastening the motor under the tub by using T40

2. Pull the motor up for disassembly.

7.24. Tub Entrance with Bellow Hose
3. Remove the tub entrerance with bellow hose.

7.25. Pressure Switch Hose Group

1. Remove screw fixing the pressure switch water reservoir.

2. Remove the tub exit with bellow hose with ball by using box wrench size 10 mm .

7.26. Tub
3. Remove twenty four screws fixing tub using box wrench size 8 mm .

7.27. Drum

1. Remove the drum.

8. Component Specifications

8.1. Drain Pump

Drain pump is both a mechanical and elektrical component which is used to drain water inside the washing machine. It has an synchronous motor inside. For better performance maintanance, pump filter should be cleaned regularly.

8.1.1. Technical Features

Nominal voltage
Nominal current
Nominal power
Frequency
Resistor (coil)
Water flow:
Thermal protector

220-240 V
$0.28 \mathrm{~A}(\pm 10 \%)$
37 W
50 Hz
$130 \Omega(\pm 5 \%)$
$17 \mathrm{~L} / \mathrm{min}$ (to 1 m height)
YES

8.1.2. Checking of Component

Check the resistance value on the component with multimeter as shown in belows figures.
Resistance value should be between 125-140 Ω

Checking the component

8.1.3. Component Controlling By Connection Measurement

You can determine the ohm value by measuring from the blue cable and blue cable (refer wiring diagram at page 43) as shown in belows figure. Resistance value should be between 125-140 Ω

8.2. Resistance

Heating element (Resistance) is a component which is desingned to regulate temperature of water inside the drum. It has three connections: Phase, notral and ground connections.

8.2.1. Technical Features

Kind of heating Nominal voltage
Nominal power
Resistance
Thermal fuse

Tubular heating element with NTC - sensor
230 V
2000 W ($\pm 5 \%$)
$24,8 \pm 5 \% \Omega$ (for NA-127VB3 and NA-147VB3)
2 - sided

8.2.2. Checking of Component

Check the resistance value on the component with multimeter as shown in below pictures.

Checking the component

8.2.3. Component Controlling By Connection Measurement

You can determine the ohm value by measuring from the grey cable and brown cable (refer wiring diagram at page 43) as shown in belows figures. Resistance value should be between 23-27 Ohm.

8.3. NTC

Component which sends signals to PCB about the water temperature inside the tub.
The Resistance (Ohm) value of the NTC decreases as the temperature increases.

8.3.1. Technical Features

Tem (${ }^{\circ} \mathbf{C}$)	$\mathbf{R} \mathbf{~ m i n}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R} \max (\mathbf{k} \mathbf{\Omega})$
-10	54,9	62,6
-5	43,0	48,6
0	33,9	38,1
5	27,0	30,1
10	21,6	23,9
15	17,4	19,1
20	14,1	15,4
25	11,5	12,5
30	9,4	10,2
35	7,8	8,3
40	6,4	6,9
45	5,4	5,7
50	4,5	4,7
55	3,8	3,9
60	3,2	3,3
65	2,7	2,8
70	2,3	2,4
75	1,9	2,0
80	1,7	1,8
85	1,4	1,5
90	1,2	1,3
95	1,1	1,1
100	0,9	1,0

NTC Tempure - Resistance Values

8.3.2. Checking of Component

Check the resistance value on the component with multimeter as shown in below pictures.

8.4. Valve

Valve is an electrical and mechanical component which is designed to take water from the network system into the washine machine. It is operated by PCB card.

8.4.1. Technical Features

Nominal voltage	$220-240 \mathrm{~V}$
Nominal power	8 VA
Frequency	$50-60 \mathrm{~Hz}$
Rated flow:	$7 \mathrm{It} / \mathrm{min}(\pm 15 \%)$
Operating water pressure	$0.0,3-1 \mathrm{Mpa}$

8.4.2. Checking of Component

Check the resistance value on the component with multimeter as shown in below pictures.
Valve water flow rate should be between $6 \mathrm{It} / \mathrm{min}-8 \mathrm{It} / \mathrm{min}$.
Each valve bobbin resistance values should be between 3,3-4.2 kohm .

8.5. Electronic Pressure Switch (EPS)

8.5.1. Technical Features

Electromagnetic field occurs as a result of the vibration of the membrane which is under pressure in the coil. The nucleus part is moved up and down by the electromagnetic field. The water level is regulated by the frequency which is controlled by the PCB and changes according to the movement of the nucleus part.

8.5.2. Checking of Component

1. Push the door lock slider with screwdriver.

2. Select the 1st program and start the machine.

3. Cut off the energy input when the water intake finishes and drum begins to rotate.

4. Check the water level inside the drum with ruler. It should be $10 \mathrm{~cm} \pm 1$.

8.6. Motor

The washing machine has an asynchronous motor. It is controlled by the PCB.
It is essential to check the motor for correct diagnosis and quick servicing. In the below picture, socket points on the motor is shown to measure with multimeter.

Motor Socket Terminals

MOTOR KODU	FiRMA	STATOR (TAM SARGI) (ohm)	TAKO (ohm)	STATOR (YARIM SARGI) (ohm)	SICAKLIK
32003986	ACC	3.30-/+ 7\%	184-/+7\%	1.20-/+7\%	$20^{\circ} \mathrm{C}$
32004905	ACC	2.70-/+ 7%	184-/+7\%	1.04-/+7\%	$20^{\circ} \mathrm{C}$
32006966	ACC	3.00-/+ 7\%	184-/+7\%	1.50-/+7\%	$20^{\circ} \mathrm{C}$
32007450	ACC	2.70-/+ 7\%	184-/+7\%	1.08-/+7\%	$20^{\circ} \mathrm{C}$
32004572	ACC	1.20-/+ 7\%	184-/+7\%	0.60-/+7\%	$20^{\circ} \mathrm{C}$
32008809	ACC	0.96-/+7\%	184-/+7\%	-	$20^{\circ} \mathrm{C}$
30027193	ANAIMEP	1.87-/+7\%	180-/+10\%	-	$20^{\circ} \mathrm{C}$
30023397	ANAIMEP	1.75-/+7\%	180-/+10\%	-	$20^{\circ} \mathrm{C}$
32002064	ANAIMEP	2.01-/+7\%	180-/+7\%	-	$20^{\circ} \mathrm{C}$
32003425	ANAIMEP	2.01-/+7\%	180-/+7\%	-	$20^{\circ} \mathrm{C}$
32000536	ASKOLL (CESET)	1.01-/+7\%	68.7-/+7\%	-	$20^{\circ} \mathrm{C}$
32000271	ASKOLL (CESET)	1.40-/+7\%	68.7-/+7\%	0.56-/+7\%	$20^{\circ} \mathrm{C}$
32000535	ASKOLL (CESET)	1.24-/+7\%	68.7-/+7\%	-	$20^{\circ} \mathrm{C}$
30027193	ASKOLL (CESET)	2.26-/+7\%	68.7-/+7\%	-	$20^{\circ} \mathrm{C}$
32008661	ASKOLL (CESET)	1.90-/+7\%	68.7-/+7\%	0.74-/+7\%	$20^{\circ} \mathrm{C}$
30023397	ASKOLL (CESET)	1.83-/+7\%	68.7-/+7\%	-	$20^{\circ} \mathrm{C}$
32004970	ATB	1.62-/+ 7\%	87-/+12\%	-	$20^{\circ} \mathrm{C}$
32004969	ATB	1.62-/+ 7\%	87-/+12\%	0.81-/+7\%	$20^{\circ} \mathrm{C}$
32009041	ATB	1.62-/+ 7\%	87-/+12\%	0.81-/+7\%	$20^{\circ} \mathrm{C}$
32004968	ATB	1.20-/+ 7\%	87-/+12\%	-	$20^{\circ} \mathrm{C}$
32009040	ATB	1.20-/+7\%	87-/+12\%	-	$20^{\circ} \mathrm{C}$
32008659	BROAD OCEAN	2.15-/+7\%	66.7-1+7\%	-	$20^{\circ} \mathrm{C}$
32008660	BROAD OCEAN	2.15-/+7\%	66.7-/+7\%	-	$20^{\circ} \mathrm{C}$
32005496	IDEA	4.60-/+7\%	227-/+7\%	-	$20^{\circ} \mathrm{C}$
32007954	WELLING	2.08-/+7\%	66.6-/+7\%	-	$20^{\circ} \mathrm{C}$
32007955	WELLING	1.59-/+7\%	66.6-/+7\%	-	$20^{\circ} \mathrm{C}$
32008852	WELLING	2.00-/+7\%	66.6-/+7\%	-	$20^{\circ} \mathrm{C}$
32008853	WELLING	2.15-/+7\%	66.6-/+7\%	-	$20^{\circ} \mathrm{C}$

Resistance values for the motor types

8.7. Door Lock

Door lock is activated at the beginning of the program in order to prevent the door from opening. It can be unlocked approximately after 2 minutes of the program end. This time delay is caused by the PTC which is assambled in the door lock.

8.7.1. Technical Features

Lock Time ($20^{\circ} \mathrm{C}$)
Unlock Time ($20^{\circ} \mathrm{C}$)
Nominal voltage
Nominal current

2" -6 "
35"-75"
220 V
16 (4) A

8.7.2. Checking of Component

Check the resistance value on the component with multi-meter as shown in below figures.
Resistance value on the PTC should be $1000 \Omega \pm 50 \%$ at $25^{\circ} \mathrm{C}$. That resistance value can be measured from terminal 3-4 (See wiring diagram page 51 below).

9. Wiring Diagram
9.1. Wiring Diagram

9.1. Wiring Diagram

[^0]: 2. Remove three screws fixing the control panel.
