
Model :RT40MA / MB RT44MA / MB

SERVICE Manual

CONTENTS

- 1. Product Specifications
- 2. Safety Warnings
- 3. Specifications of Electric Components
- 4. Electric Circuit Diagram
- 5. External Size and Designations
- 6. Refrigeration Cycle and Cool Air Circulation
- 7. Circuit Operation Theory
- 8. Troubleshooting
- 9. Exploded View and Part List
- 10. Disassembly of Freezing Compartment
- 11. Disassembly of Refrigerating Compartment

1. Product Specifications

ITEM		SPECIFIC	ATION	
Model name		RT40MA/MB	RT44MA/MB	
Veileble	Freezer	87(3.1)	87(3.1)	
Vailable Capacity(cu.ft)	Refrigerator	260(9.2)	282(10.0)	
	Total	347(12.3)	369(13.1)	
Net Dimension (WidthxDepthxHeight)		670x640x1660	670x640x1730	
		(670)	(670)	
Rated Voltage & frequency		110~115V/60Hz, 127V/60Hz, 220V/5~60Hz, 230~240V/50		
Rated Pow	er Defrost, Heater	290W/310W		
Туре о	f Refrigerator	forced convection		
Refrigerant		HFC-134a		
Refrigerant Mass		150g		
Freezing Capicity		4 STAR		
Weight (Net/Gross)		59/69(kg)	63/73(kg)	

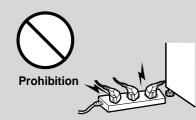
2. Safety warnings

Read all instructions before using this appliance in order to avoid risk of accident or possible damage.

Warning/Caution

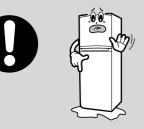
Narning This symbol is intended to alert the user to the possible death or injury.

Caution


This symbol is intended to alert the user to the possible injury or damage.

Description of symbols

\bigcirc	Indicates prohibition
	Do not disassemble
	Do not contact
0	Follow Adhere the instruction strictly
	Unplug from the electrical outlet
•	Earth the appliance to avoid the risk of an electric shock


Do not plug multiple electrical appliances into the same outlet.

• This may cause abnormal heating or a fire hazard.

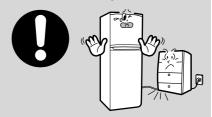
Check the operating environment.

• Do not install the refrigerator in a humid (with condensation) location or on an unstable surface.

Do not attempt to make repairs yourself.

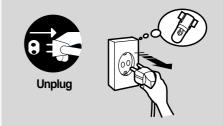
Warning

• This could lead to fire hazard or abnormal operation causing severe personal injury.


Be sure the earth.

Farth

• If earthing is not done, it will cause breakdown & electric shock.


Make sure the power cord is not crushed or damaged.

• Repair immediately all power cords or outlets that have become frayed or otherwise damaged.

Pull the power plug out for exchanging electrical equipment.

• It may cause electric shock.

Caution

Do not put bottles or kinds of glass in the freezer.

• Freezing of the contents may inflict a wound.

Do not store articles on the product.

• Opening or closing the door may throw down which may inflict a wound.

Do not store narrow and lengthy bottles or foods in a small multi-purpose room.

• It may hurt you when refrigerator door is opened and closed resulting in falling stuff down.

Use the rated components on the replacement.

• Check the correct model, rated voltage, rated correct, operating temperature and so on.

Do not store pharmaceutical products, scientific materials, etc, in the refrigerator.

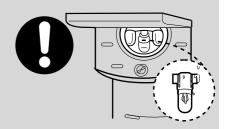
• The products which cotrolled by temperature shall not be stored in the refrigerator.

On repair, make sure that the wires such as harness should be bundled tightly.

• Bundle tightly wires in order not to be detached by the external force and then not to be wet.

On repair, remove completely dust or other things of housing parts, harness parts, and check parts.

• Cleaning may prevent the possible fire by tracking or short

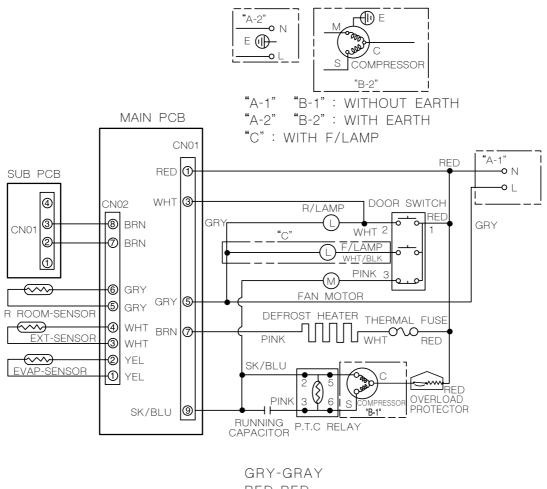

After repair, check the assembled state of components.

 It must be in the same assembled state when compared with the state before disassembly.

Check if there is any trace indicating the permeation of water.

• If there is that kind of trace, change related components or do the necessary treatment such as taping using the insulating tape.

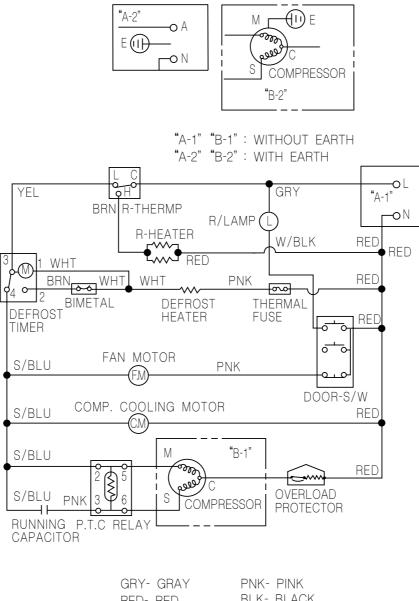
3. Specifications of Electric Components


	ITEM	SPECIFICA	ATION	
Mc	odel name	RT40MA/MB	RT44MA/MB	
	Туре	2-Door Freezer/Refrigerator		
Pov	ver Source	AC110~115V/60H 220V/50~60Hz, 23	•	
	Freezer	87	87	
Net Capacity (/ /cu.ft)	Refrigerator	260	282	
(1766.11)	Total	347/12.3	369/13.1	
	Width	670)	
Net Dimension (mm)	Depth(MA)	640(6	70)	
(((((((((((((((((((((((((((((((((((((((Height	1660	1730	
Net weight (Kg)		59	63	
Refrigerant		R134a (1	50g)	
Temperature Control		Dial (Resis	tance)	
Defrosting		Automatic (Start-Finish by PCB)		
Foam	Cabinet	Cyclo-Pentane		
insulation	Door	Cyclo-Pentane		
Liner	/Door Panel	ABS (SD-0150)		
		2 Guard-Freezer		
	Door	1 Guard-Egg,1 (Guard-Bottle	
	Storage	2 Guard-V	/ariety	
		1 Guard-J	umbo	
		1 Base Tra	ay Ice	
		1 Case Tray Ice		
		1 Shelf Fre		
Accessory	Inside	1 Vegetable		
Parts	Storage	1 Case Chille		
		2 Shelf Refri	-	
		1 Cover Vegetable		
		1 Case Veg	lerable	
	Interior Lamp	Refrigerator	(Freezer)	
	Movable Caster	2 (Rea	r)	
	Angle Adjustment	2 Legs (front)		

	ITEM		STANE	STANDARD(MECHANICAL TYPE)		
	Model			RT40/44MA/MB		
	Power so	urce	110~115V/60Hz	127V/60Hz	220V/50~60Hz	
		Model	UK162C-L1U/T3	UK162P-L1U/T3	SK182H-L2U/E02	
ycle	Compressor	Starting type		R.S.C.R		
U L	Oil charge			FREOL α–15c / 2	.00cc	
atio	Evapo	rator		Fin type		
Refrigeration Cycle	Condenser		Ν	latural convection	n type	
efri	Dryer		Мо	lecular sieve (XH	-9, 13g)	
8	Capillary tube			ID 0.75 x L3400	(mm)	
-	Thermostat	Refrigerator	PFN-174S-05F (ON:5.5°C±1.5°C	©OFF:+3.0°C±1.5°C)	
	Defrost-thermo	Bimetal (OFF/ON)	Rating Voltage/	Ampere	AC 250V / 5A	
			Open tempera	ature ON:-	5±3°C/OFF:12±3°C	
		Thermal fuse	Rating Voltage/	Ampere	AC 250V / 10A	
			Open tempera	ature	77±10°C	
		Туре	TMDE714	=1	TD-20CSA	
	Defrost-timer	Defrosting	6hr 40min(60Hz)/8hr(r(50Hz)	
Electrical		Interval	12Min			
ecti	PTC-relay	Model	J531Q33E100N	/ 200-2 J53	1Q34E220M350-2	
	e rolay	Resistance	10Ω-2PI	N	22Ω-2PIN	
	Overland	Model	4TM419		4TM308	
	protector	Overload		3	PHBYY-53	
	-	Close temp.	69±9°C		69±9°C	
		Open temp.	120±5°C	;	125±5°C	
	Capacitor	Running	250VAC/12	μF	350VAC/5.0µF	
	Resistor	Heater	MORS 1.2W			
	Heater-defrost		290W/459	2	290W/167Ω	
	Lamp		220V~240V/15W			
	Door-S	witch	250V/0.5A, 125V/1.5A			
	Earth screw		BSBN(Brass screw)			

	ITEM		STANDARD(SEMI ELECTRIC TYPE)		
	Mode	l	RT40/44	MA/MB	
Power source			220V/50Hz	230~240V/50Hz	
a		Model	MK172QI	L1U/E01	
y cl	Compressor	Starting type	R.S.	C.R	
u U U	Oil charge		FREOL α–1	5c / 200cc	
Refrigeration Cycle	Evapo	rator	Fin t	уре	
iger	Condenser		Natural conv	vection type	
Refr	Dryer		Molecular siev	re (XH-9, 13g)	
	Capillary tube		ID 0.75 x L	3400 (mm)	
	Sensor		502	AT	
	Defrost-sensor	Sensor	Rating Voltage/Ampere	DC 5V	
			Open temperature	ON:-5°C±3°C/OFF:+15°C	
		Thermal fuse	Rating Voltage/Ampere	AC 250V / 10A	
			Open temperature	77°C±10°C	
	PTC-relay	Model	J531Q35E330M385-2		
a	FIC-relay	Resistance	33Ω-2PIN		
Electrical	Overload	Model	4TM232SHBYY-53		
	protector	Close temp.	69±9°C		
		Open temp.	135 <i>±</i>	5°C	
	Capacitor	Running	350VAC	C/5.0µF	
	Heater-d	lefrost	290W/167Ω	310W/170Ω	
	Lam	ıp	220V~240V/15W		
	Door-S	witch	250V/0.5A, 125V/1.5A		
	Earth s	crew	BSBN(Brass screw)		

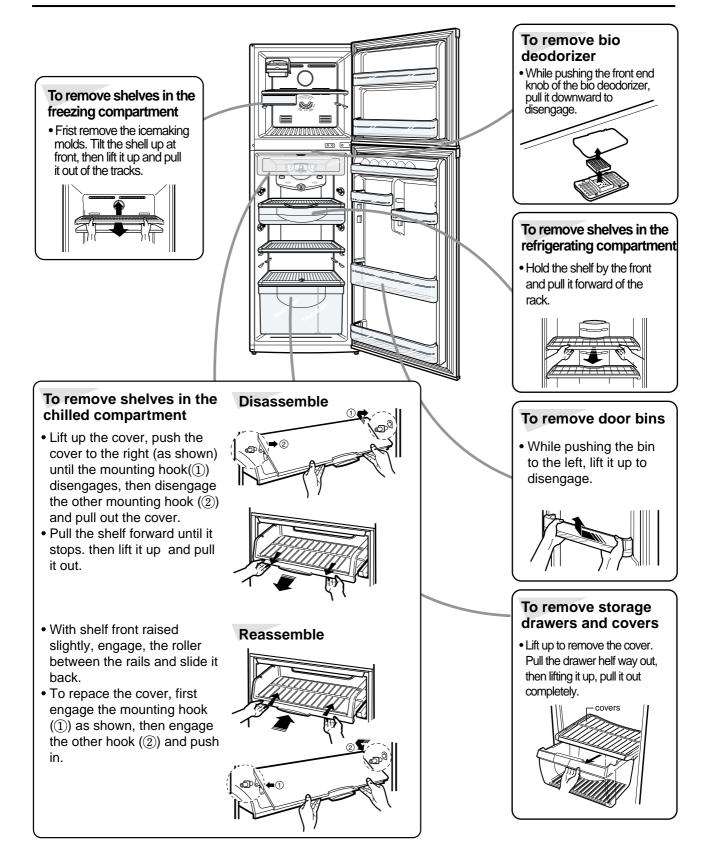
4. Electric Circuit Diagram


 Semi Electric Control Type [220V/50Hz, 230~240V/50Hz]-RT40/44

Mechanical Type

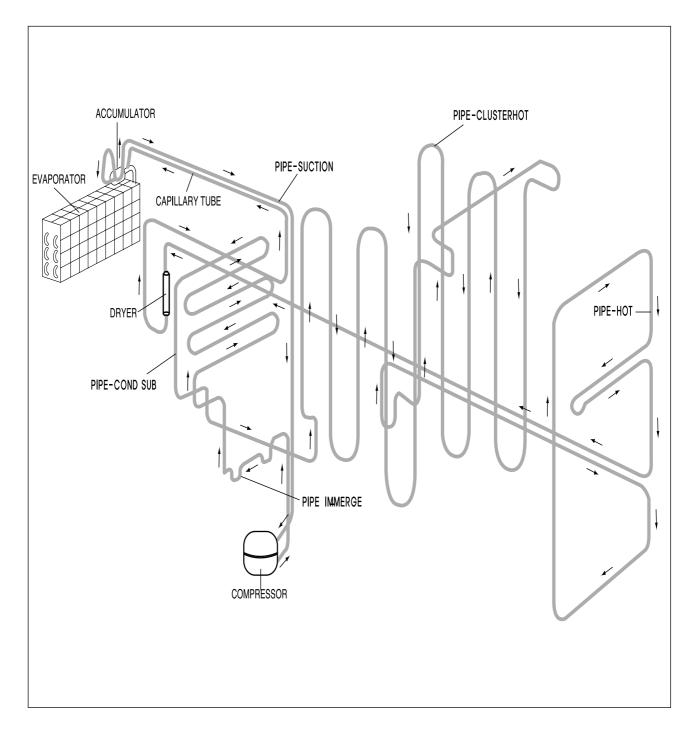
[110~115V/ 60Hz, 127V/60Hz, 220V/50~60Hz]-RT40/44

GRI-GRAI	PINK- PINK
RED- RED	BLK- BLACK
BRN- BROWN	WHT- WHITE
YEL- YELLOW	W/BLK- WHITE/BLACK
S/BLU- SKY BLUE	

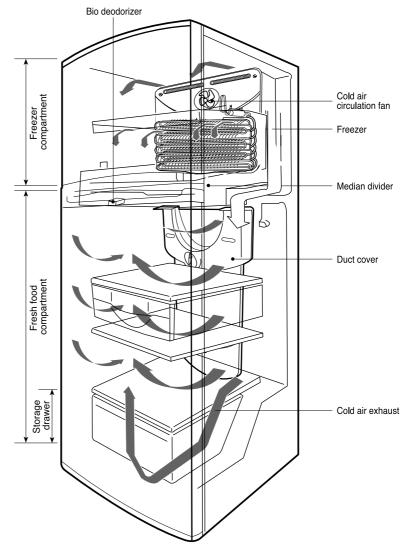

5. Extemal size and Designations

5-1) Product Dimension

MODEL	Α	В	С	D	Remark
RT40MA/MB	1660	1103.5	549.5	640(670)	
RT44MA/MB	1730	1173.5	549.5	640(670)	()BAR TYPE

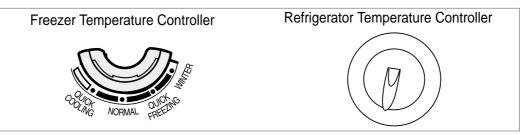

5-2) Identifying and disassembling the parts

6. Schematic diagram of coolant gas circulation


6-1) Refrigeration Cycle

 $\begin{array}{l} \mathsf{COMPRESSOR} \to \mathsf{PIPE} \ \mathsf{IMMERGE} \to \mathsf{PIPE} \ \mathsf{SUB} \ \mathsf{CONDENSER} \to \mathsf{PIPE} \ \mathsf{CLUSTER} \to \\ \mathsf{PIPE} \ \mathsf{HOT} \to \mathsf{DRYER} \to \mathsf{CAPILLARY} \ \mathsf{TUBE} \to \mathsf{EVAPORATOR} \to \\ \mathsf{ACCUMULATOR} \to \\ \mathsf{PIPE} \ \mathsf{SUCTION} \to \ \mathsf{COMPRESSOR} \end{array}$

6-2) Cool Air Circulation


- Cold air generated from the cooling system is distributed to the freezing compartment and the refrigerating compartment by the air circulation fan.
- In the freezing compartment, cold air is distributed to the compartment as well as to the shelves from the cold air exhaust port, food is frozen in the freezing compartment by cold air shower.
 Cold air that comes out of the freezing compartment is absorbed back to the lower part of the cooling system through the suction port on the median divider.
- In the refrigerating compartment, cold air is distributed to the duct cover through the median divider.
 Cold air supplied to the duct cover passes through the refrigerating compartment.
 After cooling the refrigerating compartment, cold air is absorbed to the lower part of the cooling system through the suction port on the median divider.

7. Circuit operation theory

1. Temperature Control and Operational Description of Other Functions

1. Temperature Control Part Design

2. Temperature Control Function

1)Selecting Freezer Temperature

Selecting "Quick cooling~Quick freezing" is possible with turning temperature control knob. Controlled temperature of each temperature control knob position is as follows:

Knob Position	Quick cooling	Normal	Quick Freezing	Winter
Controlled Temperature	-15±1	-19.0	-21±1	-23±1

2)Selecting Refrigerator Temperature

Selecting \bigcirc ~ (8) is possible with turning temperature control knob.

Controled temperature of each temperature control knob position is as follows:

Knob Position	1	2	3	4	5	6	Ø
Controlled Temperature	6.0	4.5	3.0	2.0	1.0	0.0	-1.0

Caution) As this controller is by the ROTARY S/W, in case it is off the position, it is set to step 4 automatically.

3. Defrosting Function

1)Defrosting is decided by the accumulated time of comp on.

- 2)Defrosting proceeds in order of heating \rightarrow recess time.
- 3)The first defrosting function after the initial power on starts with 4 hours of accumulated time of comp on, and then it repeats its function at every 8th hour of comp on.
- 4)In the process, controlling of defrosting heater ON/OFF is done by EVA-SENSOR. When the quality of EVA-SENSOR is poor (short/open) defrosting will be terminated only after recess time function without heating.
- 5)In the process, comp and fan maintain ON condition, after defrosting heating it operates with 10 min. recess time.
- 6)defrosting heating point ON and OFF operates by EVA-SENSOR and each temperature is as follows:

Heater On Point	Heater Off Point	Remark
below -5°C	15 ℃	

4. Testing Function

This function is for PCB and test of products, work process test, and SVC.
 After checking the product's function by selecting TEST S/W, let the self-diagnosis function start with the POWER OFF and ON.

1)Forced Starting Function

COMP and FAN starts immediately after the TEST S/W on the Main PCB is pressed once. So when the forced staring function is done right at the COMP OFF point, Over Load in the COMP may be caused. Extra caution is necessary.

- When forced starting function is selected, COMP and FAN run for 24 hours regardless of the freezer/refrigerator temperature and knob selection. Indicating Lamp on main PCB shows that it is a forced starting function by 0.5sec interval ON/OFF.
- When a selected forced starting function is selected and maintains for 24 hours, defrosting function starts its operation, and when defrosting is completed normal operation is carried out according to the temperature selection knob position.
- ¹To release it's operation during forced starting, power should be turned off and turned on again or test release mode on 3) below should be selected.

2)Forced Defrosting Function

If test switch is pressed once more during forced starting function, it is released immediately and forced defrosting function starts, and the Lamp on main PCB shows that it's forced defrosting by 1.0 sec. interval ON/OFF.

When forced defrosting is selected COMP and FAN is turned off immediately, and defrosting heater is turned on at the same time. At this moment if the sensed temperature of EVA-SENSOR is higher than -5.0°C, defrosting heater is not turned ON and operates only for recess time and returns to normal operation.

When Heating is completed it recesses for 10 mints. and after that indicating Lamp remains ON and returns to normal operation.

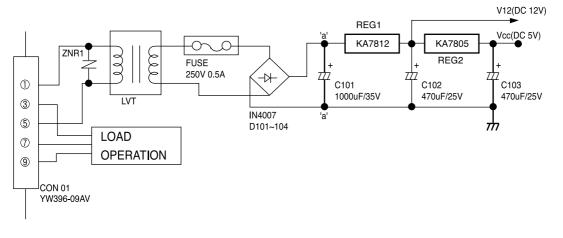
3)Test Function Release Mode

If TEST S/W is pressed once more when forced defrosting function is carried out, forced defrosting is released and stops for 10 mints. and after that it returns to normal operation.

5. Self-diagnosis Function

- 1) If the power is supplied to refrigerator, self-diagnosis function is carried out for 2 seconds internally.
- 2) If there is no defect after self-diagnosis is carried out, it returns to normal operation.
- 3) If there is defect after self-diagnosis is carried out, defected area is indicated with the corresponding display on the Table below by indicating Lamp on PCB, it does not start until all defects are completely repaired.
- 4)When the refrigerator is repaired, check if it's done completely by turning power ON and OFF.
- 5)In order to check OPEN/SHORT function of SVC temperature sensor, carry out self-diagnosis by turning power ON and OFF.
- 6) Display of Lamp Indicating Defects (Lamp On Time: 0.3sec., Lamp Off Time: 2sec.)

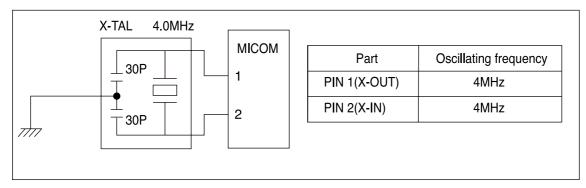
No.	Item	Led Display	Kind of Trouble	Remark
1	R-Room Sensor	On Off	Poor OpenPoor Short	When below -50 $^\circ\!\mathrm{C}$ is sensed. When above +50 $^\circ\!\mathrm{C}$ is sensed.
2	EVA Sensor	On Off	Poor Open Poor Short	When below -50 $^\circ\!\mathrm{C}$ is sensed. When above +50 $^\circ\!\mathrm{C}$ is sensed.
3	EXT Sensor		Poor Open Poor Short	When below -50 $^\circ\!\mathrm{C}$ is sensed. When above +50 $^\circ\!\mathrm{C}$ is sensed.
4	R-Room Temp. (Rotary S/W)	On	Poor Open	When 1.0V down is sensed.
5	Normal Mode	On	-	When power is supplied, Lamp remains on.


• If there are more than one defect, corresponding display is shown in sequence.

<Example of Defect Indication>

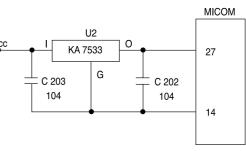
- ① When R-Room Sensor is defected, LAMP repeats one time of 0.3 second on, and then 2 seconds off.
- ⁽²⁾ When R-Room Sensor and EXT Sensor are defected at the same time, LAMP repeats one time of 0.3 second on, 2 seconds off, and then 3 times of 0.3 second on, 2 seconds off.

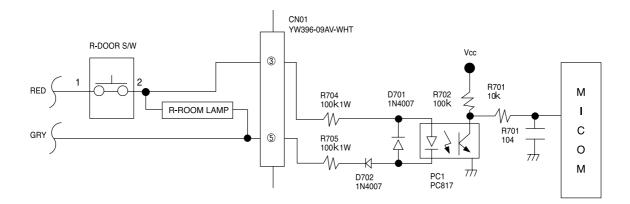
2. Operational Principle of Each Circuit


1. Power Circuit

Voltage	Applied circuit	
V12(DC 12V)	RELAY operation	
Vcc(DC 5V)	Power around micom and detection part of sensor	

The decompressed AC voltage on the DC-TRANS secondary outputs around AC 16V to the both sides of the 'a' point. Then, DC 12V and 5V are supplied through the circuit and regular voltage IC REG1, REG2.

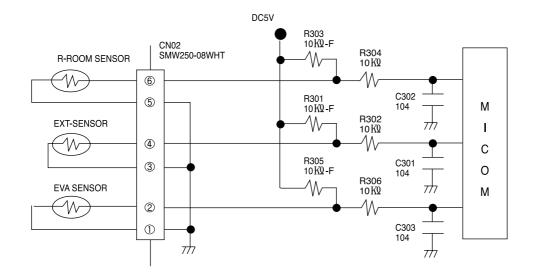

2. Oscillation Circuit


It oscillates generate clock for synchronizing the information transmission and reception of the internal elements of MICOM and to calculate the time. If the specification of resonator is changed, it is not able to operate normally because the trimming system of MICOM is altered.

3. Reset Circuit

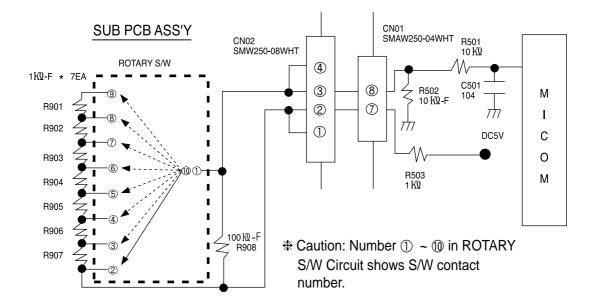
The reset circuit makes all program functions operate at the initial stage by initializes the various parts such as RAM in MICOM when the power is supplied or the power is supplied vector to the MICOM power by a power failure in a moment. When the power is supplied, the voltage of reset becomes low during scores of uSEC, and it maintains high during the normal operation.

4. Door S/W Sensor Circuit



If door is open, R-DOOR S/W contact is closed. Then when RED LINE supplies power to GRAY LINE passing through R704 and PHOTO COUPLER(PC817) LED and D702, PC817 operates and generates 50 or 60HZ globe-shaped wave.

MICOM recognizes this waveform and detects that door is open.


If door is closed, R-DOOR S/W contact is open and power is not supplied to PC817, MICOM recognizes that door is closed as DC5V is maintained continuously.

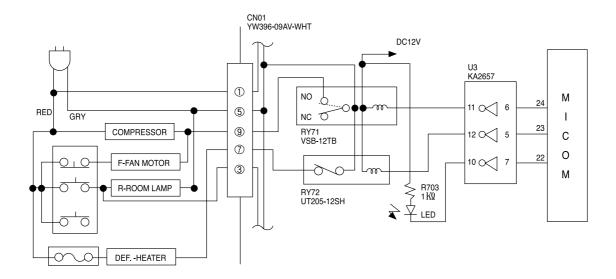
5. Temperature Sensor Circuit

- 1) As the sensor uses a thermistor, its resistance gets smaller when the temperature is high, and it gets bigger when the temperature is low.
- 2) The voltage which is input to MICOM by a sensor is calculated with Vf=(Rth \times Vcc)/(R303+Rth). (Vcc=DV5V,Rth:Sensor resistance)
- 3) Refer to the attached conversion table of resistance and input voltage of sensor for temperature.

6. Temperature Controller (Rotary S/W) Circuit

Temperature controlling is carried out by changing ROTARY S/W KNOB assembled inside the refrigerator from level 1 to level 8.

The voltage of temperature controlling SETTING is divided by combined resistance of DC5V resistance R503 and resistance value of ROTARY S/W(this is a combined parallel resistance of R908 and resistance value of ROTARY S/W position) and resistance R502.


Divided voltage is supplied to MICOM through resistance R501 and recognizes temperature controlling then carries out temperature controlling SETTING.

Input Voltages and Resistance values of MAIN PCB MICOM input unit for ROTARY S/W contact position of SUB PCB ASS'Y are like below.(In case of resistance value estimation, connector terminal should be estimated after the connector of MAIN PCB CN01 is disassembled).

Class	1 Step (2nd pin)	2 Step (3rd pin)	3 Step (4th pin)	4 Step (5th pin)	5 Step (6th pin)	6 Step (7th pin)	7 Step (8th pin)	8 Step (9th pin)	Contact Point when opened
Voltage (R502 each end)	4.54 ±0.15v	4.16 ±0.15v	3.84 ±0.15v	3.57 ±0.15v	3.33 ±0.15v	3.12 ±0.15v	2.94 ±0.15v	2.77 ±0.15v	0.1~0.7V
Resistance (CN01 7-8 each end)	0 Ω	0.99 №±1%	1.96 № ±1%	2.91 №±1%	3.841 ±1%	4.76 №±1%	5.66 №±1%	6.54 № ±1%	100 № ±1%

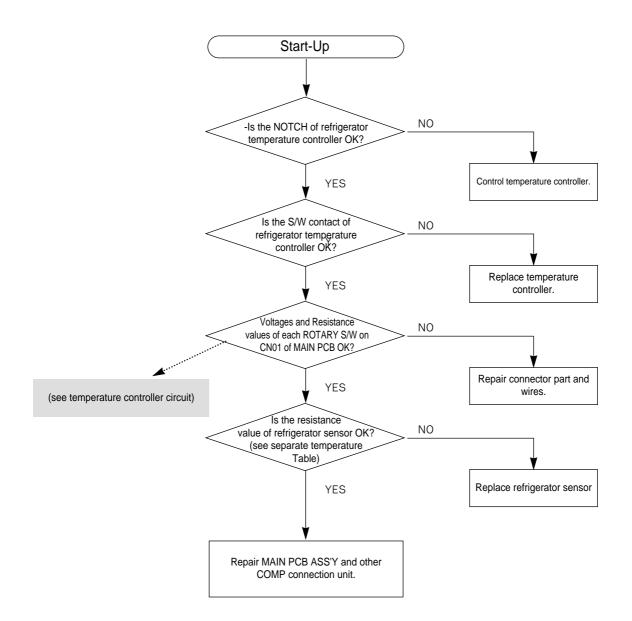
* On the above Table, resistance value is not calculated when SUB PCB ASS'Y connecting line is disconnected or there are any cracks on PCB board.

7. Load Operation and Indicating Lamp Controlling Parts

- a) When the COMP is turned on, the micom (pin 24) outputs high (DC 5V) and a realy is activated. When the COMP is turned off, the micom (pin 24) outputs low (0V)
- b) The defrosting heater is turned on, the micom (pin 23) outputs high (DC 5V) and a realy is activated. When the defrosting heater is turned off, the micom (pin 23) outputs low (0V).
- c) Indicating Lamp is turned ON when MICOM(PIN 22) input voltage is high and DC12V is passed to LED through resistance R703. When MICOM(PIN 22) output is low, LED is turned OFF.

8. Various OPTION function

MICOM						
OUTPUT1						
OUTPUT2 OUTPUT3						
OUTPUT4						
OUTPUT5						
INPUT1	D601	D605	D609	D613	D617	
INPUT2	D602	D606	D6010	D614	D618	
	D603	D607	D611	D615	D619	
INPUT3	D604	D608	D612	D616	D620	
INPUT4	0004	2000	0012	Doro	5020	


8-1. TABLE OF TEMPERATURE CHANGE OF REFRIGERATOR(•:RELEVANT DIODE NO. USED)

							•				
		_									(°C)
SHIFT	605	604	603	602	601	SHIFT	605	604	603	602	601
						+0.5	•				
-0.5					•	+1.0	•				•
-1.0				•		+1.5	•			•	
-1.5				•	•	+2.0	•			•	•
-2.0			•			+2.5	•		•		
-2.5			•		•	+3.0	•		•		•
-3.0			•	•		+3.5	•		•	•	
-3.5			•	•	•	+4.0	•		•	•	•
-4.0		•				+4.5	•	•			
-4.5		•			•	+5.0	•	•			•
-5.0		•		•		+5.5	•	•		•	
-5.5		•		•	•	+6.0	•	•		•	•
-6.0		•	•			+6.5	•	•	•		
-6.5		•	•		•	+7.0	•	•	•		•
-7.0		•	•	•		+7.5	•	•	•	•	
-7.5		•	•	•	•	+8.0	•	•	•	•	•

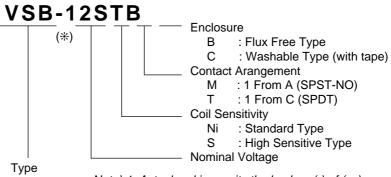
Warning) As DIODE OPTION except D601-D605 has important effects on the reliability of refrigerator, do not change it voluntarily!!!

3. Detecting Defects and Trouble Shooting

1. When refrigerator temperature is too high or too low:

2. Checking Abnormalities of MAIN PCB ASS'Y

5. VSB Relay


■ SAFETY STANDARD & FILE NUMBERS

UL 508 (File No. E56140. E108658) C22.2 No.0, No.14 (File No. LR35579)) VDE 0435, 0631, 0700

Please be noted that UL/CSA rating may differ from the Standard ratings. Please request when the approval markings are required on the cover.

ODERING INFORMATION

Relay type	Nominal coil Voltage	contact ratings					
		1/3HP	125VAC/250VAC				
VSB	3 to 100VDC 16A		30VDC/250VAC, Resistive				
			Pilot duty C 150				

COILDATA CHART

Note) 1. Actual making omits the hyphen (-) of (*)

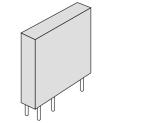
	ORDERING CODE	Coil Nominal Voltage V DC	Coil Resistance $\Omega \pm 10\%$ (at 20°C)	Must Operate Voltage V DC (at 20°C)	Must Release Voltage V DC (at 20°C)	Coil Nominal Power W (at 20°C)
	VSB - 3 ()()	3	12.5	2.1	0.3	0.72
	VSB - 5 ()()	5	36	3.5	0.5	0.70
	VSB - 6 ()()	6	50	3.5	0.5	0.72
Type	VSB- 9()()	9	115	6.3	0.9	0.70
🔶	VSB - 12()()	12	200	8.4	1.2	0.72
σ	VSB - 14 () ()	14	280	9.8	1.4	0.70
Standard	VSB - 18()()	18	460	12.6	1.8	0.70
	VSB - 24()()	24	820	16.8	2.4	0.70
Sta	VSB - 36 () ()	36	1,850	25.2	3.6	0.70
	VSB - 48()()	48	3,300	33.6	4.8	0.70
	VSB - 60 () ()	60	5,100	42.0	6.0	0.70
	VSB - 100 () ()	100	13,400	70.0	10.0	0.75
	VSB - 3S()()	3	17	2.1	0.3	0.53
	VSB - 5S()()	5	47	3.5	0.5	0.53
Type	VSB - 6S()()	6	68	4.2	0.6	0.53
	VSB - 9S()()	9	155	6.3	0.9	0.53
e	VSB - 12S()()	12	270	8.4	1.2	0.53
iti	VSB - 14S()()	14	370	9.8	1.4	0.53
Sensitive	VSB - 18S()()	18	610	12.6	1.8	0.53
Se	VSB - 24S()()	24	1,100	16.8	2.4	0.53
	VSB - 36S()()	36	2,450	25.2	3.6	0.53
High	VSB - 48S()()	48	4,400	33.6	4.8	0.53
-	VSB - 60S()()	60	6,800	42.0	6.0	0.53
	VSB - 100S () ()	100	18,860	70.0	10.0	0.53

16 Amps. Miniature Slim Type Power Relay

n FEATURES

- All or Nothing Relay
- UL, CSA, VDE, SEV, SEMKO, IMQ, ÖVE, BSI Recognized
- Working Class : C
- Type of Service : Continuous Duty
- Heavy Duty 16A Miniature Power Relay
- UL Class B(130°C) Insulation
- High Isolation in Small Package
 Insulation Distance : 8mm
 Dielectric Strength : 5,000VAC (between coil and contacts)
 Surge Strength : 10,000V
- Low Power Consumption and high Sensitive Type Available (VSB-S)
 Washable (With Tape) Type Available
- Washable (Will'I Tape) Type Availa

■ SPECIFICATIONS


CONTACT

Arrangement	1 From A(SPST-NO)or
	1 From C(SPDT)
Material	Silver alloy
• Type	Single Type
Resistance (initial)	Max. 200m Ω (at 6VDC 1A)
 Ratings (resistive) 	
Nominal Load	16A 250VAC or 30VDC
Max. Switching Power	4,000VA, 480W
Max. Switching Voltage	380VAC, 150VDC
Max. Switching Current	16A
Max. Carrying Current	16A
Max. Switching Load(* 1)	5VDC 100 mA
Life Expectancy	
Mechanical	$5 \times 10^{\circ}$ operations
Electrical	$1 \times 10^{\rm s}$ operations(at nominal load)

COIL

Nominal Voltage							
Nominal Power (at 20°C)	Standard Type	:0.70 to 0.75W					
	High sensitive Type	:0.53W					
Operate Power (at 20°C)	Standard Type	:0.35 to 0.37W					
	High sensitive Type	:0.26W					
Operate & Release Voltage	Dperate & Release Voltage Please see Coil Data Chart						
Max. Contious Voltage	Please see Characte	ristic Data					

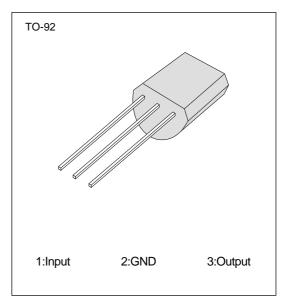
STRUCTURE

GENERAL

Insulation Resistance	Min. 1,000M Ω at 500VDC					
Dielectric Strength	1,000VAC 1 minute					
IMQ 企	(between open contacts)					
	5,000VAC 1 minute					
	(between coil and contacts)					
Surge Strengh	10,000V					
IMQ 🦁	(at $1.2 \times 50 \mu s$ standard surge wave)					
Temperature Range	Standard Type :-30°C to+65°C					
(at nominal Voltage)	High sensitive Type :-30°C to+75°C					
Time Value	Operate Max. 20ms					
(at nominal voltage)	Release Max. 10ms					
 Vibration Resistance 						
Misoperation	10 to 55 Hz,					
	double amplitude of 1.5mm					
Endurance	10 to 55 Hz,					
	double amplitude of 1.5mm					
 Shock Resistance 						
Misoperation	$100m/s^{2}(11\pm1ms)$					
Endurance	1,000m/s²(6±1ms)					
Unit Weight						
Enclosure	Polybutylene Terephthalate(PBT)					

(*1) Min. Switching Load mentioned above are reference values. Please perform the confimation test with the actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.

■ ABSOLUTE MAXIMUM RATING (T₄=25°C)

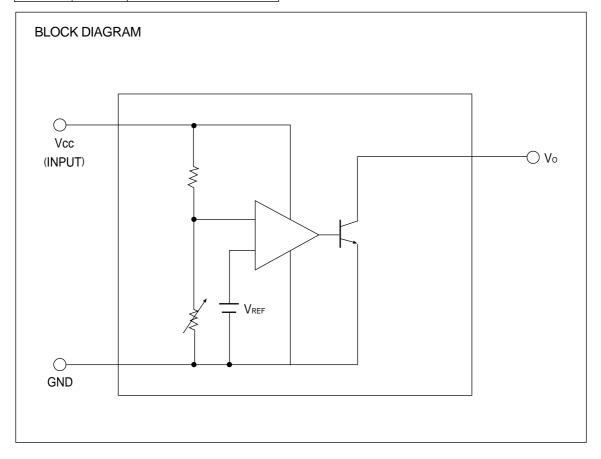

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 ~ +15.0	V
Detecting Voltage	Vdet	3.3	V
Hysteresis Voltage	RHYS	50	mV
Operating Temperature	TOPR	-30 ~ +75	°C
Storage Temperature	Тѕтс	-50 ~ +150	°C
Power Dissipation	P□	200	mW
Detecting Voltage Temperature Coefficient		±0.01	%/°C

■ ELECTRICAL CHARACTERISTICS (T₄=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Detecting Voltage	Vdet	R_{L} = 200 Ω , $V_{OL} \leq 0.4 V$	3.15	3.3	3.45	V
Low Output Voltage	Vol	RL= 200 Ω	-	-	0.25	V
Output Leakage Current	LKG	V _{cc} = 15V	-	-	0.1	μN
Hystersis Voltage	VHYS	R∟= 200 Ω	30	50	100	mV
Detecting Voltage		$R_1 = 200 Q$		+0.1		±/°C
Temperature Coefficient				±0.1		TIC
Circuit Current (at on time)	IccL	V _{CC} = V _{DET(MIN)} -0.05V	-	300	500	μA
Circuit Current (at off time)	Іссн	Vcc = 5.25V	-	30	50	μA
Threshold Operating Voltage	VTH(OPR)	R_L = 200 Ω , $V_{OL} \leq 0.4V$	0.6	0.8	1.0	V
"L" Transmission Delay Time	t⊳∟	R _L = 1.0№, C _L =100pF	-	10	15	μs
"H" Transmission Delay Time	tом	R _L = 1.0№, C _L =100pF	-	15	20	μs
Output Current (at on time 1)	tol I	$V_{\text{CC}} = V_{\text{Det(MIN)}} - 0.05V, T_{\text{C}} = 25^{\circ}C$	10	18	28	mA
Output Current (at on time II)		Vcc=Vdet(min)=0.05V,		10	20	
	to∟ ⊥	Tc =-30 ~ +75 ℃	8	16	30	mA

3-3V VOLTAGE DETECTOR

The KA7533 prevents error of system from supply voltage below normal voltage level at the time power on and instantane ous power off in systems.



• FEATURES

- Detecting against error operations at the power ON/OFF
- Resetting function for the low voltage microprocessor.
- Checking low battery.

ORDERING INFORMATION

Device	Package	Operating Temperature
KA7533Z	TO-92	-30 ~ +75 °C

n ELECTRICAL CHARACTERISTICS KA7812/I

(Refer to test circuit, TMN<TJ<TMAX, Io=500mA, VI=19V, CI=0.33 µF, Co=0.1 µF, unless otherwise specified)

		Test Conditions		K	A781	21	K	A781	21	
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Unit
			T _J = 25 °C	11.5	12	12.5	11.5	12	12.5	
Output Voltage	.,	5.0mA	\leq 1.0A, P _D \leq 15W							V
Oupur voltage	Vo	Vi=	14.5V to 27V				11.4	12	12.6	
		Vi=	15.5V to 27V	11.4	12	12.6				
Line Regulation	۸Vo	TJ= 25℃	V_1 = 14.5 to 30V		10	240		10	240	mV
Line Regulation	ΔVo		$V_1 = 16 \text{ to } 22V$		3.0	120		3.0	120	mv
Load Regulation	۸V۰	T J = 25 ℃	l∘= 5mA to 1.5A		11	240		11	240	mV
		13-230	l₀=250mA to 750mA		5.0	120		5.0	120	ΠV
Quiescent Current	l۵		T_J=25°C		5.1	8		5.1	8	mA
		lo= 5mA to 1.0A			0.1	0.5		0.1	0.5	
Quiescent Current Change	∆ام	V ₁ = 14.5V to 30V						0.5	1.0	mA
		V= 15V to 30V			0.5	1.0				
Output Voltage Drift	∆V₀/∆T		l₀=5mA		-1			-1		mV/°C
Output Noise Voltage	VN	f = 10Hz	to 100KHz, T₄=25°C		76			76		μN
Ripple	RR		f = 120Hz	55	71		55	71		dB
Rejection		V= 15V to 25V		55	71		55	/ 1		uр
Dropout Voltage	Vo	l₀=1A, Tյ=25°C			2			2		V
Output Resistance	R₀	f = 1KHz			18			18		mΩ
Short Circuit Current	lsc	$V_i =$	35V, T₄=25°C		230			230		mA
Peak Current	РК		T J =25 ℃		2.2			2.2		А

 $\bigstar T_{\text{MIN}} < T_{\text{J}} < T_{\text{MAX}}$

 $KA78XXI:T_{\text{MIN}}=-40^{\circ}\mathrm{C}\,,\ T_{\text{MAX}}=125^{\circ}\mathrm{C}$

KA78XX, $T_{\text{MIN}} = 0^{\circ}\text{C}$, $T_{\text{MAX}} = 125^{\circ}\text{C}$

*Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

ABSOLUTE MAXIMUM RATINGS(T _A = 25°C	unless otherwise specified)
--	-----------------------------

Characteristic	Symbol	Value	Unit
Input Voltage (for $V_0 = 5V$ to 18V)	Vı	35	V
(for V ₀ =24V)	Vi	40	V
Thermal Resistance Junction - Cases	ReJC	5	°C /W
Thermal Resistance Junction - Air	RejA	65	°C /W
Operating Junction Temperature Range KA78XX/A	TOPR	0 ~ +125	°C
KA78XXI		-40 ~ +125	°C
Storage Temperature Range	Тѕтс	-65 ~ +150	°C

■ ELECTRICAL CHARACTERISTICS KA7805/I (Refer to test circuit, Tmin < TJ < Tmax, Io = 500mA, Vi=10V, Ci= 0.33 µF, Co= 0.1 µF unless otherwise specified)

		Test Conditions		K	A780	51	K	4780	51	
Characteristic	Symbol			Mir		Min	Тур	Max	Min	Тур
			T _J = 25 °C	4.8	5.0	5.2	4.8	5.0	5.2	
	.,	5.0mA :	\leq 1.0A, P ₀ \leq 15W							V
Output Voltage	Vo	Vı	= 7V to 20V				4.75	5.0	5.25	
		Vı	= 8V to 20V	4.75	5.0	5.25				
Line Demulation		TJ=25℃	$V_1 = 7V \text{ to } 25V$		4.0	100		4.0	100	····) (
Line Regulation	∆V∘		V ₁ =8V to 12V		1.6	50		1.6	50	mV
Lood Dogulation	۸Vo	T J = 25 ℃	l₀ = 5mA to 1.5A		9	100		9	100	
Load Regulation	_	1J=25 C	Io=250mA to 750mA		4	50		4	50	mV
Quiescent Current Change	la	T J = 25 ℃			5.0	8		5.0	8	mA
		l o=	5mA to 1.0A		0.03	0.5		0.03	0.5	
Quiescent Current Change	∆ام	Vı	= 7V to 25V					0.3	1.3	mA
		V	= 8V to 25V		0.3	1.3				
Output Voltage Drift	∆V₀/∆T		$I_0 = 5 m A$		-0.8			-0.8		mV/°C
Output Noise Voltage	VN	f = 10Hz	to 100KHz, T₄=25°C		42			42		μN
Ripple	RR		f = 120Hz		70			70		dB
Rejection		V ₁ = 8 to 18V		62	73		62	73		uв
Dropout Voltage	Vo	l₀= 1A, Tյ=25°C			2			2		V
Output Resistance	R∘	f = 1KHz			15			15		mΩ
Short Circuit Current	sc	$V_{\text{I}}{=}35V,T_{\text{A}}{=}25^{\circ}\!\mathrm{C}$			230			230		mA
Peak Current	РК		T J =25 ℃		2.2			2.2		А

 ${\color{black}{\star}} T_{\text{MIN}} < T_{\text{J}} < T_{\text{MAX}}$

 $KA78XXI: T_{\text{MIN}} = -40^{\circ}\text{C}, \ T_{\text{MAX}} = 125^{\circ}\text{C}$

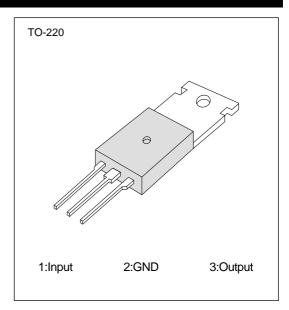
KA78XX, $T_{MIN} = 0^{\circ}C$, $T_{MAX} = 125^{\circ}C$

*Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately.

Pulse testing with low duty is used.

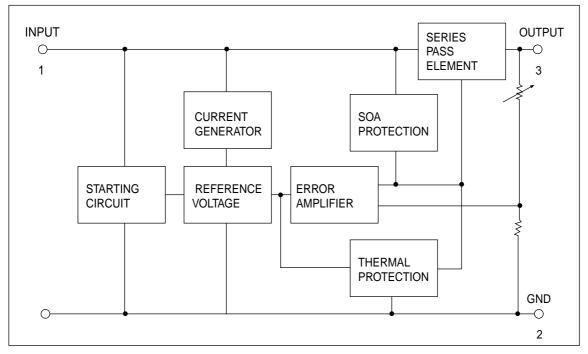
6. Circuit related Parts List

REGULATOR


3-TERMINAL 1A POSITIVE VOLTAGE REGURATORS

The KA78XX series of three-terminal positive regulators are available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

FEATURES


- Out put Current up to 1A
- Output Voltages of 5; 6; 8; 9; 10; 11; 12; 15; 18; 24V
- <None>Thermal Overload Protection
- Short Circuit Protection
- Output Transistor SOA Protection

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KA78XX	TO-220	0 ~ +125℃
KA78XXA	TO-220	0~+1230
KA78XXI	TO-220	-40 ~ +125 ℃

7. Reference) Resistance and voltage conversion table of sensor for temperature

The input voltage of MICOM port can be different according to the composition of H/W and its specification is standardized using a 10 M-F grade.

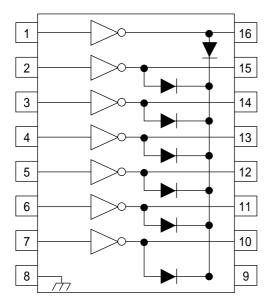
The voltage specification of relevant MICOM when the sensor is open : Around DC 5V (Vcc level)

The voltage specification of relevant MICOM when the sensor short circuits : Around DC 0V (Ground level)

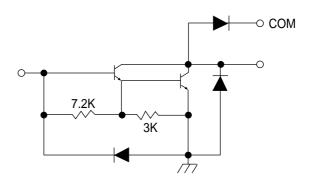
Temperature	Resistance (K2)	Voltage(v)	Temperature	Resistance (K2)	Voltage(v)
-35	68.648	4.364	00	12.949	2.821
-34	65.011	4.333	01	12.424	2.77
-33	61.595	4.301	02	11.924	2.719
-32	58.384	4.268	03	11.447	2.668
-31	55.366	4.235	04	10.993	2.618
-30	52.526	4.2	05	10.559	2.567
-29	49.854	4.164	06	10.146	2.518
-28	47.337	4.127	07	9.752	2.468
-27	44.967	4.09	08	9.375	2.419
-26	42.733	4.051	09	9.016	2.37
-25	40.626	4.012	10	8.673	2.322
-24	38.640	3.972	11	8.345	2.274
-23	36.765	3.93	12	8.032	2.227
-22	34.995	3.888	13	7.732	2.180
-21	33.323	3.845	14	7.446	2.134
-20	31.743	3.802	15	7.172	2.088
-19	30.250	3.757	16	6.910	2.043
-18	28.838	3.712	17	6.659	1.998
-17	27.502	3.666	18	6.420	1.954
-16	26.237	3.62	19	6.190	1.911

Temperature	Resistance (KQ)	Voltage(v)	Temperature	Resistance (K2)	Voltage(v)
-15	25.040	3.573	20	5.970	1.869
-14	23.906	3.525	21	5.759	1.827
-13	22.832	3.477	22	5.557	1.786
-12	21.814	3.428	23	5.363	1.745
-11	20.848	3.397	24	5.178	1.705
-10	19.932	3.329	25	5.000	1.666
-09	19.062	3.279	26	4.829	1.628
-08	18.237	3.229	27	4.665	1.590
-07	17.453	3.178	28	4.508	1.553
-06	16.709	3.127	29	4.357	1.517
-05	16.001	3.076	30	4.212	1.481
-04	15.328	3.025	31	4.072	1.446
-03	14.688	2.974	32	3.938	1.412
-02	14.080	2.923	33	3.810	1.379
-01	14.501	2.872			

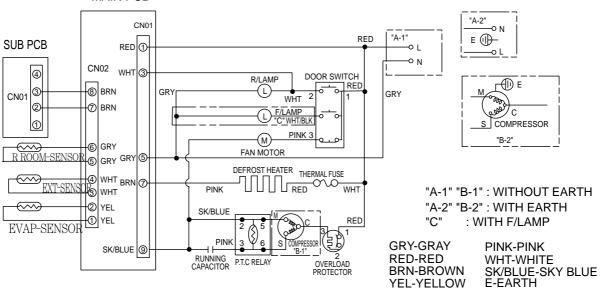
8. Specification of Main Part


DRIVER IC(KA2657) DRIVER : MC1413BCP(KA-2657) KA2655/6/7/8/9

LINEAR INTEGRATED CIRCUIT

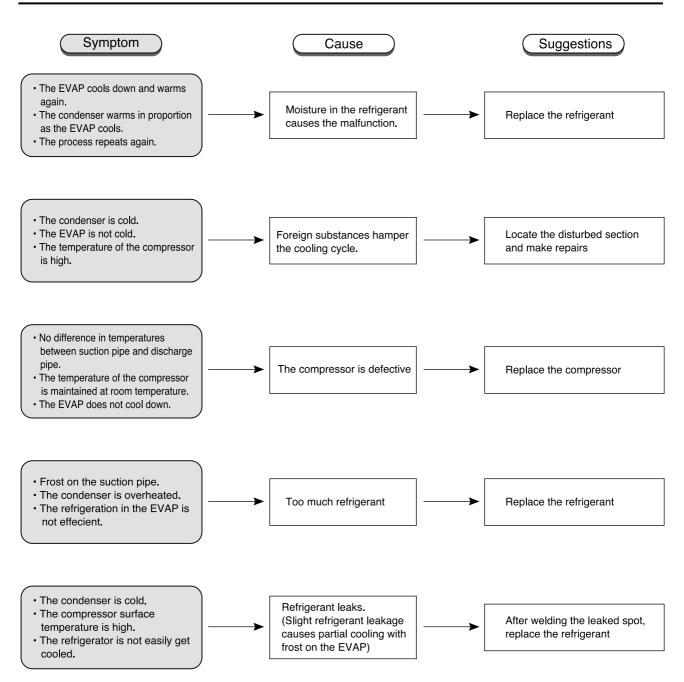

■ ELECTRICAL CHARACTERISTICS (Ta = 25°C, unless otherwise noted)

Characteristic	Symbol	Test	Min	Trp	Max	Unit
DC Current Gain	HFE	$V_{CD} = 2.0V, I_C = 350mA(KA2655)$	1000			
Input Capacitance	C⊪			15	30	pF
Dranonation Dalay Time	Ton	$0.5 V_{INTO} 0.5 V_{O}$		0.25	1.0	μs
Propagation Delay Time	TOFF	0.5 VINTO 0.5 Vo		0.25	1.0	μs
Clamp Diada Laskana Cumant		V _{IN} = open, V₀ = GND, V _R = 50V, Ta = 25°C			50	μA
Clamp Diode Leakage Current	R	V _{IN} = open, V₀ = GND, V _R = 50V, Ta = 25°C			100	μA
Clamp Diode Forward Voltage	VF	ı⊧= 350mA		1.7	2.0	V


PIN CONFIGURATION

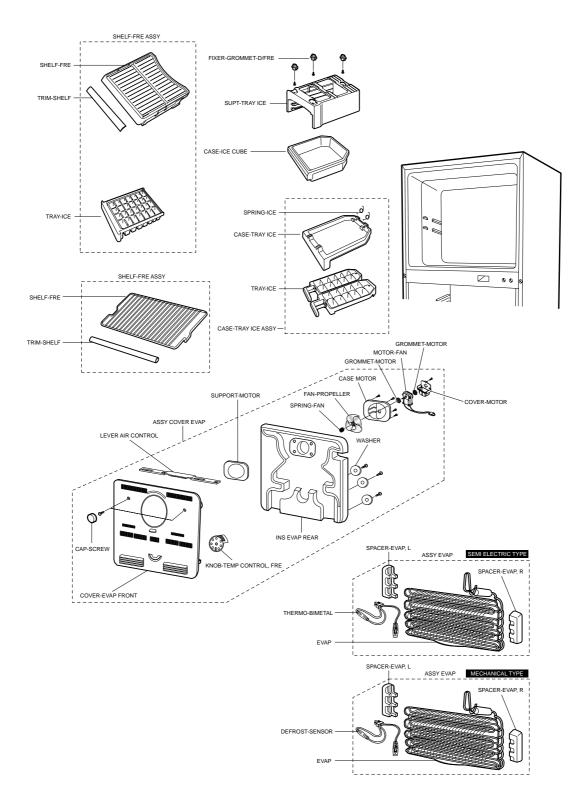
SCHEMATIC DIAGRAMS KA2655(each driver)

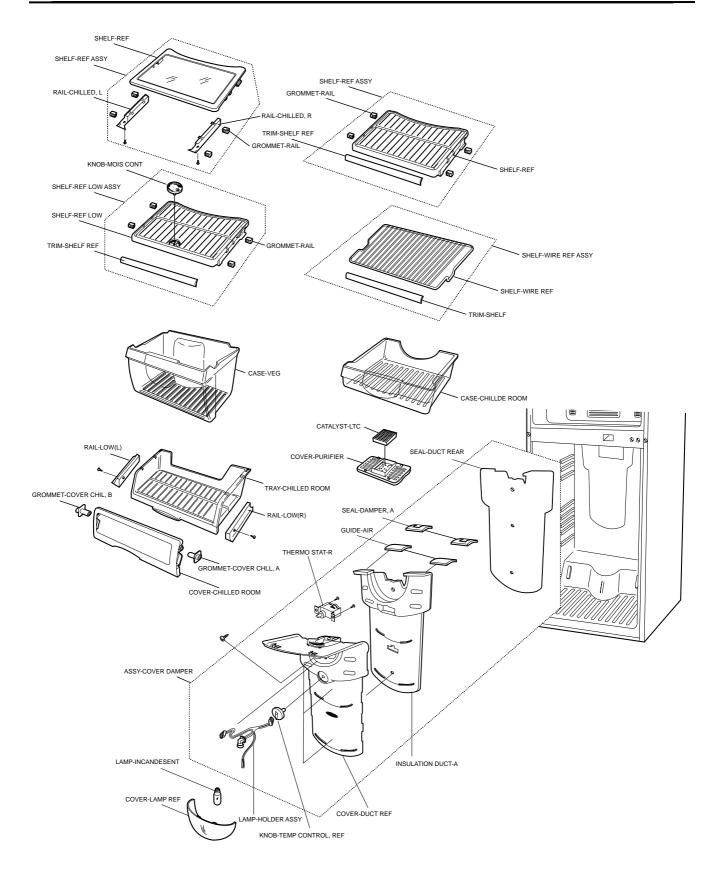
9. Specification of Main Circuit Part


WHT/BLK-WHITE/BLACK

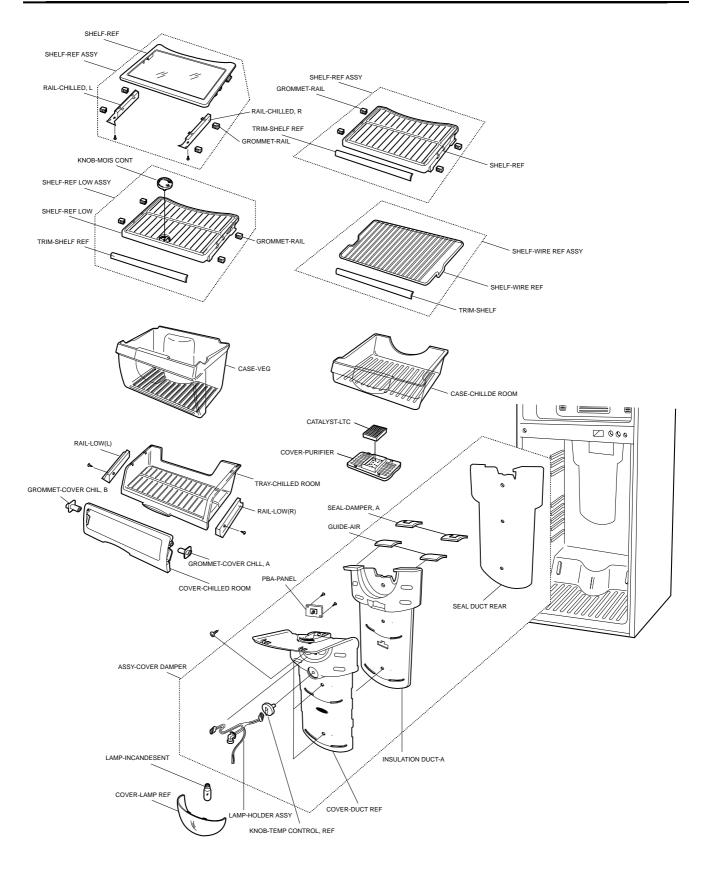
NO	CODE-NO	ITEM	DESCRIPTION	Q'ty	REMARKS
1	DA32-10105P	EVA SENSOR ASS'Y	502AT	1	
2	DA32-10109J	R-SENSOR ASS'Y	502AT	1	
3	DA41-00010A	MAIN PCB ASS'Y	AC220V/50, 60HZ		
4	DA41-00010B	MAIN PCB ASS'Y	AC127V/60HZ		
5	DA41-00010C	MAIN PCB ASS'Y	AC240V/50HZ	1	
6	DA41-00010D	MAIN PCB ASS'Y	AC115V/60HZ		
7	DA41-00012A	SUB PCB ASS'Y	T3-P/J	1	
8	DA32-10109M	EXT SENSOR ASS'Y	502AT	1	

8. Troubleshooting

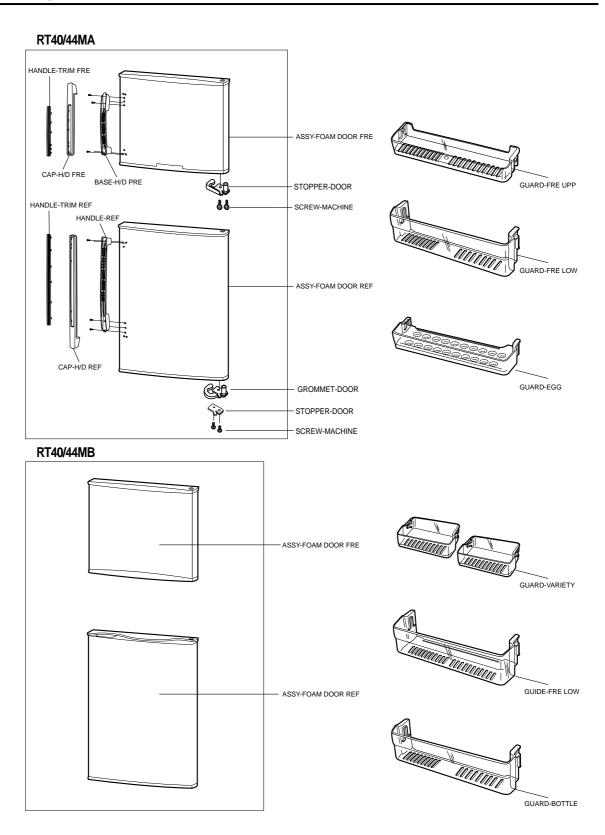

8-1 Trouble check for the cooling cycle

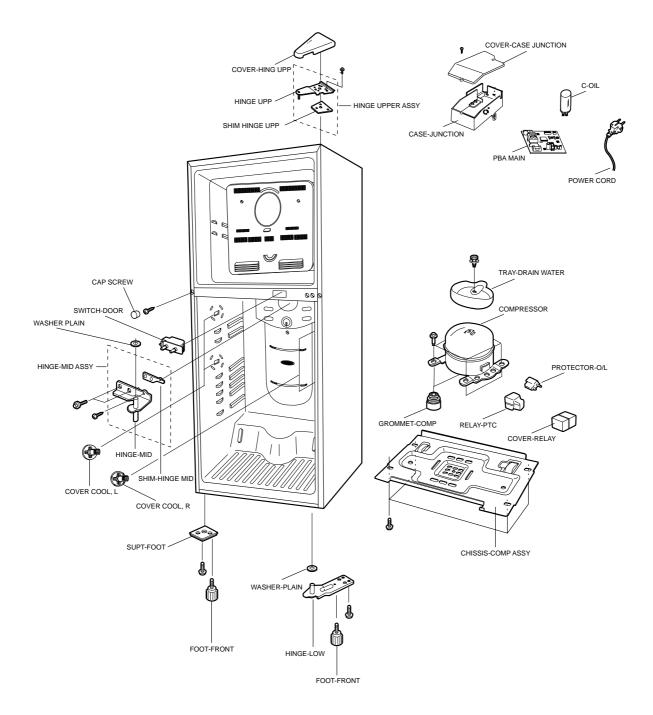


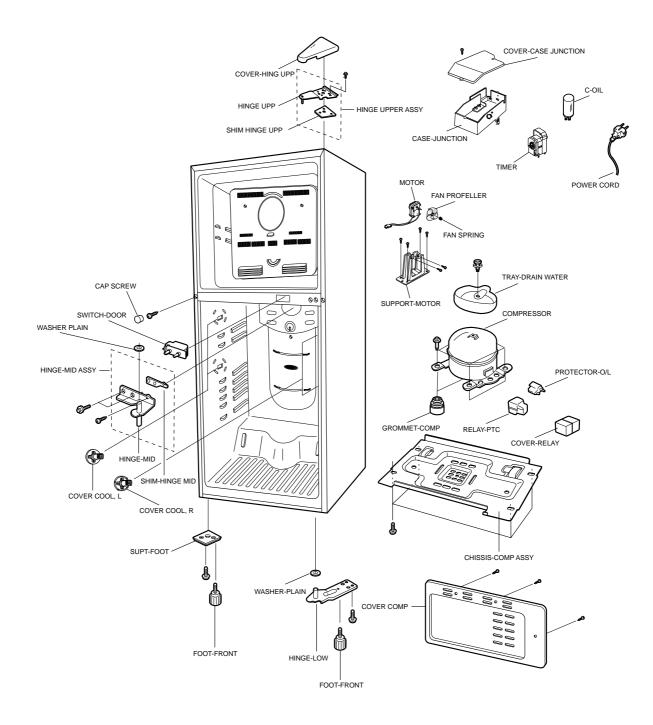
8-2 Diagnosing the main components


Components	Diagnosing me	Location			
Compressor	 Use the tester to measure the resistance. Bring the component to cool down completely before measuring. 	Measuring point Primary iwre Secondary wire	Primary iwre Approx $10 \sim 500 k\Omega$ 0Ω and		Mechanical compartment
P.T.C Relay	 Use the tester to measure the resistance. Bring the component to cool down completely before measuring. 	Normal Approx ∞Ω ~ k	NormalAbnormalApprox $\infty \Omega \sim k\Omega$ 0Ω and $\infty \Omega$		Mechanical compartment
Condenser	 Use the tester to measure the resistance. Bring the component to cool down completely before measuring. 	NormalAbnormalApprox 10Ω ~ 80kΩ0Ω and ∞Ω			
Overload protector	 Use the tester to measure the resistance. Bring the component to cool down completely before measuring. 	Normal 0Ω	Abno ∞		Mechanical compartment
Fan-motor	• Use the tester to measure the resistance.	Normal Approx 100Ω ~ 20			Mechanical compartment Freezing compartment
Door switch	• Use the tester to measure the resistance.	Measuring point A B contact point When the switch is on by the contact		Abnormal ∞MΩ and∞Ω	Between the upper and the lower doors
Defrost heater	 Use the tester to measure the resistance. Bring the component to cool down completely before measuring. 	Normal 40Ω ~200Ω	Abno ∞ MΩ		EVAP

9-1 Freezing compartment

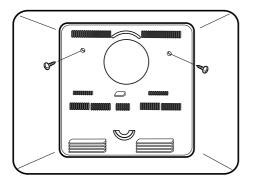



9-2 Refrigerating compartment(Mechanical Type)

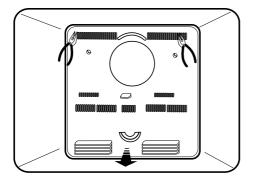


9-3 Refrigerating compartment(Semi Electric Type)

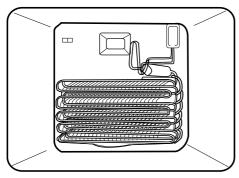
9-4 Door parts

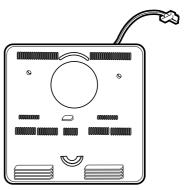


10. How to Disassemble of freezing Compartment


10-1 COVER-EVAP ASS'Y

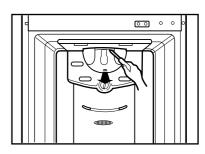
1. Take out food & useless in the freezer room and get rid of the moisture in the freezer.

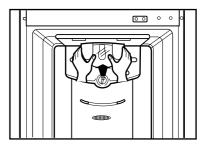



2. Please pull up the top with a long-nose and insert the hand into the gab, as shown below.

Take a part the connected housing.

3. When the COVER-EVAP, ASSY is taken a part, take an action on the problem. Reassemble the cover evap a'ssy.




11. How to disassemble of refrigerating Compartment

11-1 Changing the Light Bulb

When you open the refrigerator door, a light comes on the help you find what you are looking for more easily. If you need to replace the bulb, proceed as follows.

- 1. Remove the chiller compartment by:
 - ♦ Putting it towards you until it meets the stop
 - Tilting the front up slightly and continuing to pull the compartment towards you
- 2. With a flat-bladed screwdriver, pries out the upper part of the light cover. Pull the cover free.
- 3. Unscrew and remove the light bulb.
- 4. Insert new bulb(maximum of 15 W. E14 small screw base).
- 5. Replace the light cover by pushing it until it clicks back into place.
- 6. Replace the chiller compartment by sliding it back into position.

272,Oseon-Dong,Kwangsan-Gu, Kwangju-City,Korea,506-253 TEL:(062)950-6811,6812 FAX:(062)950-6829

> ©Samsung Electronics Co,Ltd Refrigerator Division 2003.04 Printed in Korea DA82-00004A